Evaled®
Evaporation Technologies
An effective ready-to-market solution for concentrating and removing salts, heavy metals and a variety of hazardous components.

Technology

Evaled vacuum evaporators are an effective fluid waste management solution for concentrating wastewater volumes, removing pollutant substances and producing high quality, reusable distillate (ZLD).

This industrial evaporation system is fully automatized. Modular units are low in energy consumption with low CO2 footprint.

Benefits

- Disposal cost reduction
- Wastewater volume reduction
- High quality outlet for recycling and reuse
- By-products recovery
- ZLD (Zero Liquid Discharge)

Specifications

- Skid-mounted modular units
- Highly automated, 24/7 operation
- Ready to use (Plug & Play)
- Monitoring by remote control
- Minimum maintenance
- Quality certification ISO 9001/2015

Reliability

All evaporators undergo a Factory Acceptance Test (FAT) with water before shipment.

KEYWORDS
Reliability, effectiveness in wastewater volume reduction, high quality distillate, water reuse (ZLD).
Three different evaporation technologies operating in under vacuum close loop systems to meet your water treatment needs.

Wastewater treatment units with distillate production capacities from 0.1 to 200 m3/day (0.02 - 37 gpm).

SERIES

PC
- **Heat pump**

AC
- **Hot/cold water**

RV
- **Mechanical vapour recompression**

specifications
- **Designed to offer flexibility and superior reliability**
 - low boiling temperature
 - recovery of heat-sensitive products
 - good distillate quality
 - low fouling and scaling

MODELS

<table>
<thead>
<tr>
<th>MODELS</th>
<th>F</th>
<th>0.7</th>
<th>1.4</th>
<th>2.4</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.1</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODELS</th>
<th>F</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODELS</th>
<th>F</th>
<th>10</th>
<th>15</th>
<th>25</th>
<th>40</th>
<th>60</th>
<th>120</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaporation Leadership since 1978
Industries and applications

- Mechanical & Surface Treatments (Automotive, Aviation, Appliances, Furniture)
- Healthcare (Pharma, Cosmetics)
- Chemicals & Detergents
- Waste (Incineration, Landfill, Collectors)
- Biogas & Biofuels
- Photovoltaic & Microelectronics
- Food & Beverage
- Graphic Arts
- Power
- Oil & Gas
- Mining & Primary Metals
- Other industrial processes (Textile, Pulp & Paper, etc.)

Fit-for-purpose materials

Austenitic stainless steel
- **Austenitic weakly bound structure, non-hardening, non-magnetic.**
- The low percentage of carbon in this alloy reduces the risk of intergranular corrosion at high temperatures.
- Uses: alkaline liquids, acid liquids (pH>5) with a low percentage of chlorides (e.g., oil emulsions, liquids from flexographic printing).

Superduplex stainless steel
- **Austenitic-ferritic structure, magnetic.**
- The high percentage of chromium gives excellent resistance to localized corrosion.
- Uses: acidic liquids (pH>4) with high chlorides and metals content (e.g., galvanic wastewater, landfill leachate).

Nickel alloy
- **High flexibility Cr-Ni-Mo steel.**
- The low carbon content ensures resistance to the formation of carbides when zones are exposed to thermal variation.
- It has excellent resistance to localized corrosion, both in oxidizing and reducing environments, even at high temperatures.
- Uses: very acid liquids (pH<3) with high content of chlorides, fluorides and metal (e.g., anodizing wastewater, special applications).

Silicon Carbide (SiC)
- **Chemically inert material resistant to almost all aggressive substances.**
- It is usually matched with another chemically inert material, PTFE, a fluoride co-polymer used for coating the inner surfaces of the boiling chamber.
- Uses: aggressive liquids (e.g., pickling wastewater, chromic acid recovery).